Product Description
| Series | Model | Displ. | Capacity | Power | COP | Capacitor | Dimension(A) | Dimension(B) | |
| cm3/rev | w | Btu/h | w | w/w | μF/V | mm | mm | ||
| K | KN083VAMMC | 8.3 | 2,571 | 6,858 | 695 | 2.89 | 25/380 | 268.2 | 234.8 |
| KN092VEHMC | 9.2 | 2,260 | 7,711 | 795 | 2.84 | 25/400 | 263.2 | 234.8 | |
| KN104VGMMC | 10.4 | 2,520 | 8,598 | 880 | 2.86 | 25/400 | 264.7 | 239.3 | |
| R | RN125VHFMC | 12.5 | 3,100 | 10,577 | 1,030 | 3.01 | 30/400 | 264.9 | 240.8 |
| RN135VHEMC | 13.5 | 3,340 | 11,396 | 1,120 | 2.98 | 30/400 | 287.5 | 260.5 | |
| RN145VHEMC | 14.5 | 3,610 | 12,317 | 1,210 | 2.98 | 30/400 | 287.5 | 260.5 | |
| RN196VHEMC | 19.6 | 4,800 | 16,378 | 1,680 | 2.86 | 40/400 | 287.5 | 260.5 | |
| RN199VHRMC | 19.9 | 4,770 | 16,275 | 1,620 | 2.94 | 45/400 | 294.8 | 278.0 | |
| RN211VHFMC | 21.1 | 5,230 | 17,845 | 1,730 | 3.02 | 50/400 | 294.8 | 260.5 | |
| RN222VHFMC | 22.2 | 5,470 | 18,664 | 1,810 | 3.02 | 50/400 | 294.8 | 260.5 | |
| T | TN220VQEMC | 22.0 | 5,380 | 18,357 | 1,840 | 2.92 | 50/400 | 336.1 | 279.8 |
| L | LN28VBRMC | 28.4 | 7,050 | 24,055 | 2,310 | 3.05 | 60/390 | 381.8 | 340.9 |
| LN30VBRMC | 30.2 | 7,680 | 26,204 | 2,470 | 3.11 | 60/420 | 381.8 | 340.9 | |
| LN32VBRMC | 32.8 | 8,320 | 28,388 | 2,680 | 3.10 | 60/420 | 381.8 | 340.9 | |
| LN38VBRMC | 38.0 | 9,700 | 32,980 | 3,160 | 3.07 | 60/420 | 381.8 | 340.9 | |
| LN42VBRMC | 42.8 | 10,530 | 35,907 | 3,510 | 3.00 | 60/420 | 381.8 | 340.9 | |
| Misubishi Rotary Inverter Compressor | |||||||||
| Series | Model | Displ. | Capacity | Power | COP | fRange | Dimension(A) | Dimension(B) | |
| cm3/rev | w | Btu/h | w | w/w | rps | mm | mm | ||
| K | KNB073FCKMC | 7.3 | 2,250 | 7,677 | 690 | 3.26 | 15-115 | 213.0 | 234.5 |
| KNB092FADMC | 9.2 | 2,925 | 9,980 | 850 | 3.44 | 15-115 | 235.9 | 248.5 | |
| KNB120FACMC | 12.0 | 3,545 | 12,096 | 1,120 | 3.17 | 15-115 | 242.2 | 252.3 | |
| S | SNB140FCAMC | 14.0 | 4,380 | 14,945 | 1,300 | 3.37 | 10-120 | 254.2 | 271.5 |
| SNB150FGAMC | 15.0 | 4,620 | 15,763 | 1,420 | 3.25 | 10-130 | 259.2 | 283.0 | |
| SNB172FNQMC | 17.2 | 5,430 | 18,425 | 1,770 | 3.07 | 10-130 | 255.7 | 279.5 | |
| SNB200FGMMC | 20.0 | 6,220 | 21,223 | 1,840 | 3.38 | 10-120 | 259.2 | 283.0 | |
| SNB220FBGMC | 22.0 | 6,840 | 23,338 | 2,060 | 3.32 | 10-120 | 287.5 | 283.0 | |
| SYB280FARMC | 28.0 | 8,900 | 30,367 | 2,650 | 3.36 | 15-120 | 332.4 | 306.6 | |
| T | TNB220FFEMC | 22.0 | 6,940 | 23,679 | 2,150 | 3.23 | 10-110 | 267.1 | 317.5 |
| TNB306FPNMC | 30.6 | 9,880 | 33,711 | 3,571 | 3.28 | 10-120 | 294.8 | 273.0 | |
| M | MNB33FEBMC | 33.8 | 10,830 | 36,952 | 3,260 | 3.32 | 10-120 | 374.0 | 344.0 |
| MNB40FEQMC | 40.0 | 12,900 | 44,015 | 3,960 | 3.26 | 10-120 | 374.0 | 356.0 | |
| MNK42FDMMC-L | 42.1 | 13,000 | 44,356 | 4,280 | 3.04 | 10-120 | 390.0 | 344.0 | |
| MNB42FCKMC | 42.1 | 13,780 | 47,017 | 4,040 | 3.41 | 10-120 | 390.0 | 344.0 | |
| L | LNB42FSCMC | 42.9 | 13,980 | 47,700 | 4,240 | 3.30 | 10-120 | 376.8 | 353.4 |
| LNB53FDKMC | 53.7 | 16,835 | 57,441 | 5,480 | 3.07 | 10-120 | 421.3 | 407.4 | |
| LNB65FAGMC | 65.2 | 19,760 | 67,421 | 6,460 | 3.06 | 10-120 | 421.3 | 423.8 | |
| LNB80FAMMC | 80.6 | 23,155 | 79,005 | 8,185 | 2.83 | 10-130 | 421.3 | 423.8 | |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 1 Years |
|---|---|
| Warranty: | 1 Years |
| Installation Type: | Stationary Type |
| Lubrication Style: | Oil-free |
| Structure Type: | Closed Type |
| Power Supply: | 380V/50Hz/6pH,420V/60Hz/6pH |
| Samples: |
US$ 199/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
How are air compressors utilized in pneumatic tools?
Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:
Power Source:
Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.
Air Pressure Regulation:
Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.
Air Volume and Flow:
Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.
Tool Actuation:
Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.
Versatility:
One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.
Portability:
Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.
Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2024-02-15