China high quality Ce Air Compressor Oil-Free 0303051X 8gallon/30liters with Great quality

Product Description

Sales Distribution

Brands

Partners

Honor

Category Capability

 

The CHINAMFG 8 gallon /30 liters air compressor brings power to portability. Equipped tough wheels to move across rugged job sites. Oil-free pump for less maintenance. The 1.5 horse power /1080W motor delivers 150 Max CHINAMFG and 4 CFM/115L/min. at 40 CHINAMFG to get the job done. Includes a 1-year warranty. Extended warranty available.

Technical Specification

Tank Size ( gallon) 8 gal /30 liters
Tank shape  Vertical / Hotdog / Pancake / Twin stack / Parallel / Detachable / Abnormal Hotdog
ASME tank (Y/N)
Running HP 1.5  HP
Cut-in/Cut-off (PSI) 120PSI-150PSI
CFM@40psi 4.0
CFM@90psi 3.0
 Motor type Induction motor
Oil free/lubricate Oil-free
Cord length 6’/1.83m
Wheels 2× 6”   imitated pneumatic wheels with plastic hub
Air filter Iron-Spraying plastics (black, with rubber cover)
Drain valve 1 normal valve
Life cycle(Hrs) 300h @ 50% duty cycle
Duty cycle % 50%
Noise level dB(A) 2m ≤85 dB(A)

    Features
    • 1.5 HP/1080W induction motor, oil free
    • 8 gallon/30 litres  tank
    • 150 max PSI
    • Air Flow: 3.0CFM@90PSI,88 L / min at 6.2 bar
    • Rugged wheels and handles for great mobility in rough work sites
    • The oil-free pump means less maintenance
    • Removable handle for easy storage 
    Specifications 
    • Tank size : 8 gallon/ 30 liters
    • Max PSI : 150
    • power : 1080W
    • Tank Style : Horizontal
    • Pump : Oil free
    • Motor : Induction
    • Product Length*Width* Height  : 29.3×13.8×23.2inch/745×350×590mm
    • Product weight (lbs):    50.6lbs/23kg
    Packaging Info
    • Package dimensions (L x W x H)  :26.6x11x24.4inch/675x280x620mm
    • Package weight :  59.4lbs/27kg

      /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    Lubrication Style: Oil-free
    Cooling System: Air Cooling
    Cylinder Arrangement: Balanced Opposed Arrangement
    Cylinder Position: Vertical
    Structure Type: Semi-Closed Type
    Compress Level: Single-Stage
    Samples:
    US$ 100/Piece
    1 Piece(Min.Order)

    |
    Request Sample

    Customization:
    Available

    |

    air compressor

    What role do air dryers play in compressed air systems?

    Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

    1. Moisture Removal:

    Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

    2. Contaminant Removal:

    In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

    3. Protection of Equipment and Processes:

    By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

    4. Improved Productivity and Efficiency:

    Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

    5. Compliance with Standards and Specifications:

    Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

    By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

    air compressor

    How do you maintain proper air quality in compressed air systems?

    Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

    1. Air Filtration:

    Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

    2. Moisture Control:

    Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

    3. Oil Removal:

    If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

    4. Regular Maintenance:

    Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

    5. Air Receiver Tank Maintenance:

    Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

    6. Air Quality Testing:

    Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

    7. Education and Training:

    Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

    8. Documentation and Record-Keeping:

    Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

    By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

    air compressor

    What are the different types of air compressors?

    There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

    1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

    2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

    3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

    4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

    5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

    6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

    These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

    China high quality Ce Air Compressor Oil-Free 0303051X 8gallon/30liters   with Great qualityChina high quality Ce Air Compressor Oil-Free 0303051X 8gallon/30liters   with Great quality
    editor by CX 2023-12-27